
DDF Controller Board Documentation v1.00

Grant Elliott and Scott Torborg∗
1E Disco Dance Floor Team

(Dated: June, 2005)

1. INTRODUCTION

The DDF Controller Board was developed for the 1E
Disco Floor installed at MIT’s East Campus in Jan-
uary of 2005. The board offers USB control of 192
LEDs with 16 level intensity control as well as 64 bi-
nary switches. See web.mit.edu/storborg/ddf/ for more
information about the floor or to purchase PCBs. Pro-
ceeds from PCB orders will go towards new projects by
the team.

Documentation, schematics, and source code are made
available under the Creative Commons license. You are
free to use this information for nonprofit use and to pro-
duce derivative work provided, in both cases, that the 1E
Disco Dance Floor Team be credited as the original cre-
ators. Derivative work must also be released under this
license and be used for exclusively non-profit use. Any
exceptions to these conditions must be approved by the
team, who may be contacted at ddf@mit.edu. For more
information, please see the Creative Commons website.

While these files may not be used commercially, pur-
chasers of boards are free to use them for any purpose, in-
cluding commercial applications. Grant Elliott and Scott
Torborg reserve all rights on board layout.

The DDF Controller Board and associated documenta-
tion and code are provided as is with no warranty. The
1E Disco Dance Floor Team is not responsible for any
damage caused to the board or other equipment through
use or misuse of the board or documentation. When
properly assembled, the board is known to function as
claimed.

1.1. What You Need

In addition to a PCB, available from the First East
Disco Dance Floor team, you will need to obtain the parts
listed in Appendix A. Additionally, you will need a 5V
power supply capable of sourcing 4A (less if not all LEDs
are populated), an AVR programmer (available from At-
mel, or you can build your own with a parallel port),
and a voltmeter. An oscilloscope may also be useful for
debugging, but is not necessary.

∗Electronic address: ddf@mit.edu

Red XXXX0XX0

Green XXXX0XX1

Blue XXXX1XX0

Sensor XXXX1XX1

Row 1 XX10XX0X

Row 2 XX10XX1X

Row 3 XX01XX0X

Row 4 XX01XX1X

TABLE I: I2C Address Masks for colors and rows.

2. HARDWARE

The DDF Controller Board measures 4.25” by 5”. The
bottom of the board contains the USB interface on the
left and debugging test points on the right. The remain-
der of the board is divided into four quadrants, each
of which maps to a row of the dance floor and conse-
quently will be referred to simply as a row. Row one is
located directly above the USB interface, with row two
above it, and rows three and four to their right. Each
row contains 16 cable connectors, each intended for a
cell of three LEDs and a sensor. Cable connectors are
numbered counter-clockwise beginning at the lower left
of each quadrant.

2.1. Technical Description

The FTDI232BM located in the controller region pro-
vides a USB to serial interface and passes data into the
USART of the Atmega8. The Atmega8 interprets this
data and issues commands over the I2C bus to the 16
MAX7313 LED drivers. Each LED driver corresponds
to one color (or the sensors) of one row and is assigned
an address in hardware as given by Table I. The LED
drivers then control intensity through 4 bit pulse width
modulation (PWM). Please see the data sheets on these
three components to learn more about their functionality
as well as about the USB, serial, and I2C communications
standards.

2.2. Assembling the Board

If you are not familiar with surface mount soldering,
we recommend you begin by reading Mike Anderson’s
guide (Appendix C) which also includes helpful advice
unique to this board.

2

A bill of materials may be found in Appendix A. You
must populate the USB interface at the bottom of the
board and may then populate between one and four of
the quadrants. Each quadrant requires four LED drivers.

Begin by soldering the QSOP24 MAX7313 LED
drivers in the quadrants, taking care to not short adjacent
pins. Now is a good time to populate the resistor packs
and decoupling capacitors located around each driver as
well. The part numbers of resistor packs we used for our
LEDs are given in the bill of materials; you should choose
your own for the LEDs you have. Experiment to normal-
ize apparent brightness between colors while not drawing
more than 20mA with any LED. Also note that you will
most likely need to populate the resistor packs with 2
quad-packs (as shown in the bill of materials) instead of
a single 8-pack, due to the small set of values available
in an 8-pack. You should not populate header or wires
at this time.

Next, populate the USB interface starting with
the FTDI232BM and ATMEGA8, each of which is
a TQFP32. Now solder the crystal on top of the
FTDI232BM and 0603 resistors and capacitors around
them both chips. Finally, solder the power and commu-
nications LEDS, the power connector, and the USB jack.
Note that you may chose between the circular power plug
or the Molex connector. There is no need to populate
both. To the right of the USB interface are several test
points. These may be populated with .1” header, or left
vacant.

Important: If you are populating more than one quad-
rant of LED drivers, you will need to use external pull
up resistors on the I2C lines (If you chose to use internal
pull-ups, you must modify the firmware appropriately).
The external pullups are located along the SDA and SCL
LEDs. If you do not populate these LEDs, you must
bridge the pads on the LED footprint, so that the re-
sistor connects to +5V. Some LEDs may also interfere
with the I2C interface. It is therefore recommended that
the SDA and SCL LEDs not be populated during normal
use, though the footprint is present for testing purposes.
None of this applies to the RXD and TXD LEDs, which
may be populated or left vacant.

Finally, connect wire or header to the pads located
around each quadrant. Pay attention to the numbering
and orientation of these pads. Orientation is labeled on
the left and right sides of the board and each connector
footprint is clearly numbered.

2.3. Connecting LEDs and Sensors

Each cable connector has five lines - +5, R, G, B, and
S. The power line is connected internally to +5V and
should be wired to the anode of the three LEDs as well
as one side of the sensor switch. The lines marked R,
G, B should be connected to the cathodes of the three
LEDs controlled by this cable. The line marked S should
be connected to the other side of the sensor. Note that

this line is internally pulled down by resistor packs R7,
R8, R15, R16, R23, R24, R31, R32, which should be
chosen accordingly.

3. FIRMWARE

Firmware for the Atmega8 is included in the file
firmware.c, which uses the libraries usart.c (a modifica-
tion of a standard Atmel library for serial communica-
tion) and TWI Master.c (a standard Atmel library for
I2C communication). These are reproduced in Appendix
E. We recommend using AVR-GCC or IAR to compile
this code. It has been tested under the latter, but should
compile under the former with minor changes (primarily
names of constants).

This firmware implements a base set of commands
completely compatable with the firmware used on the 1E
Dance Floor and a base set of error codes. For compat-
ibility with existing implementations, it is recommended
that the base commands and error codes be preserved.

A command consists of a single byte specifying the
action, followed by the appropriate number of data bytes.
Upon completion, the Atmega will return an appropriate
number of data bytes, followed by a status byte. Each
bit of the status byte corresponds to an error code, any
number of which may be set. As such, a status byte of
0x00 corresponds to success. The base set of commands
is given in Appendix B.

The firmware included uses a serial baudrate of 56Kbps
to communicate with the USB interface chip. At this
speed, a framerate of 17fps is achievable. At higher
speeds, this may be increased. However, most systems
will not support these speeds for serial communication
by default and you are responsible for the necessary con-
figuration. The baudrate may be increased to as much
as 1Mbps. Please see the Atmega8 datasheet for infor-
mation on supported baudrates.

4. SOFTWARE

Example host software is included for some POSIX
platforms. Drivers for the FTDI FT232BM USB inter-
face chip are available on the FTDI website for Win-
dows (including CE), Linux, Mac OS X, FreeBSD, and
OpenBSD. The included host software is most thoroughly
tested on Mac OS X, although it should be fairly easily
portable to other platforms.

The host software is written in C, and depends on sev-
eral important libraries and header files:

• fcntl.h: The fcntl constants are used to open the
POSIX device files corresponding to the module se-
rial interfaces.

• stdio.h: The stdio functions are used to read and
write bytes to the serial interface. These bytes give
appropriate commands and data to the firmware

3

running on the microcontroller in order to control
the LEDs and other functions.

• termios.h: The termios structure and constants
are used to initialize the serial port when opening
it for reading and writing. This is what sets the
baud rate, parity, bit format, etc.

• stdlib.h: The stdlib contains the malloc() func-
tion, which is used to allocate memory to the struc-
tures and buffers used to send data and commands
to the floor.

• libpthreads, pthread.h: The pthreads library is
a basic threading library. This allows I/O func-
tions (reads and writes) to happen in parallel, so
the control application doesn’t block and wait on
each read and write. This is critical for reasonable
performance.

The host software included is in the form of a simple API
that other applications can use (there are some example
applications included as well). The functions available
are prototyped in ddf.h, and the full functions are in
ddf.c. Also, you will need to define appropriate constants
in ddf.h for the size of your floor (number of modules).
A different layout would also require adjusting the code.

The ddf library is threaded with pthreads, so it may
not be usable within other thread libraries (for example,
SDL threads). This may be of concern if you are develop-
ing a plug-in for another application that will control the
dance floor. If this is the case, you should use pthreads
when developing your plug-in, to maintain compatibility.
If you are not interfacing with other threaded software,
the threading should be completely transparent, and does
not concern the application programmer.

Here’s an example application to write random colors
to the floor.

/* include the ddf library */
#include "ddf.h"

void main() {
/* declare the dancefloor structure */
dancefloor *fl;
/* declare a buffer to write colors from */
unsigned char *buf;
/* just an iterator */
int i;

/* seed the random numbers with time */
srand(time(NULL));

/* initialize the dancefloor */
fl = init();

/* reset the floor to black */
powerdown_dancefloor(fl);

/* loop forever */

while(1) {
/* fill the buffer with random bytes */
for(i = 0; i < ROWS*COLS*3; i++)
fl->buf[i] = rand() % 256;

/* write the buffer to the floor */
write_dancefloor_buf(fl);

}
}

When the floor is initialized, the process spawns a new
pthread for each module. That module is then responsi-
ble for sending commands over the serial interface to that
module. When a command is not being sent, the process
simply waits for the master process to send a signal. It
does this with a pthread condition.

More complex examples are included with the software.
Also, refer to the ddf.h header file for specifications of
other useful functions.

5. DEBUGGING

Debugging can sometimes be a painful process. To
help you through it, here are a few suggestions if you run
into problems.

5.1. General problems

If you are having any sorts of problems with the board
not working, the first thing to do is check your solder-
ing. Regardless of whether or not the board was work-
ing prior to the problem, a bad solder joint is the most
likely culprit. It’s particularly difficult to get good sol-
dering joints on the tiny resistor packs and MAX7313
LED drivers. You can check continuinity between pins
on different ICs by measuring resistance with a multime-
ter. Another good way of identifying poor solder joints
or bridges is to hold the board up to a bright light. This
emphasizes the traces and pins on the ICs.

Another good thing to check is the board’s power sup-
ply. The board draws a lot of current, so even if you are
using a 5V power supply, the voltage may be dropping
under heavy load and resetting the components. If the
board stops responding sometimes when the many LEDs
are turned on, you should consider using heavier power
cables or a better power supply.

5.2. USB interface is not working

Surprisingly, many USB problems are caused by poor
solder connections on the USB jack. If the jack is hit or
leaned on, it may break the solder joints. Try touching
up these connections before looking into more complex
issues.

If the USB interface is not working and you have
thoroughly checked all of your soldering and component

4

placement, there are a few other possibilities. Many OSs
offer USB drivers with extra debug capability and prob-
ing applications. This can give you a great deal of infor-
mation about what is going on with the USB bus, and
may point to the problem.

One possibility is that the EEPROM on the board is
corrupt, and that is causing FT232BM to be configured
improperly. You can try desoldering the 93C46 EEP-
ROM to see if this corrects the problem.

5.3. Board is returning nothing or errors

The most likely case here, if all other possibilities have
been checked, is that the ATMega8 is not properly pro-
grammed. In addition to reprogramming the microcon-
troller with the firmware, you should carefully check the
programming fuses to ensure that the microcontroller
is running at the right speed (8MHz with the provided
firmware) and the right power supply voltage.

A painful mistake is to set the programming fuses such
that the microcontroller uses an external oscillator (there
is none on the board). Recovering from this is difficult–it
is possible to use a function generator to provide a clock
on the correct pins, but the easiest thing to do is simply
desolder the chip and replace it with a new one.

5.4. LEDs are not working

If only some LEDs are not working, the most likely
problem is the soldering and connection of those LEDs
(or those LEDs are broken). If an entire row of LEDs
of one color is not working, the problem is probably
with a MAX7313 driver chip. You should check to make
sure that the chip is getting the right power supply (the
MAX7313s are powered off of 3.3V provided by a small
regulator on the USB driver chip) and they are properly
connected to the I2C bus.

Another possible problem is that the I2C bus is not
working at all. You should carefully check the pullup
resistors used on the I2C bus and make sure that they
match appropriately to the number of LED drivers you
have populated.

6. THANK YOU

We hope the DDF Controller Board can serve your
needs. We also hope you will find our documentation
to be of the highest quality. This document will be
updated periodically as we receive feedback. If you
have comments or suggestions, feel free to contact us at
ddf@mit.edu.

5

APPENDIX A: BILL OF MATERIALS

Disco Dance Floor Controller Board Bill of Materials Scott Torborg
Board Ref Mfg Part Number Value Q Qty 1 Manufacturer Supplier Part Supplier
Board DDF1 - 1 $40.0000 Disco Dudes DDF1 Disco Dudes

742C083102JTR Sensor res. 16 $0.0420 CTS 742C083102JCT-ND Digikey

742C083221JTR Red res. 16 $0.0420 CTS 742C083221JCT-ND Digikey

742C083680JTR Green res. 16 $0.0420 CTS 742C083680JCT-ND Digikey

742C083820JTR Blue res. 16 $0.0420 CTS 742C083820JCT-ND Digikey

MCH185CN104KK 0.1uF / 50V 22 $0.0950 Rohm 511-1175-1-ND Digikey
C23 ECJ-1VB1E333K 33nF 1 $0.0470 Panasonic PCC1769CT-ND Digikey
C17 ECJ-1VB0J475M 4.7uF 1 $0.2360 Panasonic PCC2318CT-ND Digikey
R40 MCR03EZPJ222 2.2k 1 $0.0690 Rohm RHM2.2KGCT-ND Digikey
R37, R39 MCR03EZPJ103 10k 1 $0.0690 Rohm RHM10KGCT-ND Digikey
R41 MCR03EZPJ105 1M 1 $0.0690 Rohm RHM1.0MGCT-ND Digikey
R33, R34 MCR03EZPJ270 27R 2 $0.0690 Rohm RHM27GCT-ND Digikey
R38, R45, R46 MCR03EZPJ152 1.5k 3 $0.0690 Rohm RHM1.5KGCT-ND Digikey
R35 MCR03EZPJ471 470R 1 $0.0690 Rohm RHM470GCT-ND Digikey
R36 MCR03EZPJ472 4.7k 1 $0.0690 Rohm RHM4.7KGCT-ND Digikey
X2 CSTCR6M00G53Z-R0 6MHz 1 $0.6200Murata 490-1218-1-ND Digikey
U19 ATMEGA8L-8AI MCU 1 $3.5500 Atmel ATMEGA8L-8AI-ND Digikey
U1-U16 MAX7313AEG LED driver 16 $2.7400Maxim MAX7313 Maxim
X1 897-30-004-90-000000 USB conn. 1 $1.2300Mill-Max ED90003-ND Digikey
U17 AT93C46A-10SI-2.7 EEPROM 1 $0.7700 Atmel AT93C46A-10SI-2.7-ND Digikey
U18 FT232BM USB int. 1 $5.0500 FTDI - Parallax
X3 PJ-102BH Power male 1 $0.4200 CUI CP-102BH-ND Digikey
- PP-002B Power female 1 $0.6500 CUI CP-004B-ND Digikey
ISP PZC03DAAN Prog. Conn. 1 $1.2400 Sullins S2011-03-ND Digikey

22-28-4110 0.1” header 1 $0.5900Molex WM6411-ND Digikey
TOTALS $103.1210

R7, R8, R15,
R16, R23, R24,
R31, R32

R1, R2, R9,
R10, R17, R18,
R25, R26

R3, R4, R11,
R12, R19, R20,
R27, R28

R5, R6, R13,
R14, R21, R22,
R29, R30
C1-C16, C18-
C22, C24

POWER, I2C,
SERIAL

6

APPENDIX B: PROTOCOL SPECIFICATIONS

The upper nib of a command gives its class. Currently, only classes 1-8 are in use. Class 0 is not used for historical
reasons. Classes 9-F currently have no indicated use, though this is subject to change.

1. Read and Write Commands

Classes 1, 2, and 3 are reserved for write commands, read commands, and combination write/read commands,
respectively. Additionally, lower nibs of 0 or 1 refer to commands that affect the entire board or a row, respectively.
Lower nibs of 2, 3, and 4 are reserved for reads and writes of chips (that is, a single color of a single row), cells (three
colors of a single cable connector), and individual LEDs, though these are not currently implemented. 2 commands
are unimplemented because the current application makes their use unlikely to be efficient (though the code is in
place, it is used as a helper function of a 1 command and not intended for direct calling). 3 and 4 commands are
unimplemented because the DDF Controller hardware makes these commands more costly than a 1 command. They
are reserved for cross compatibility with future hardware revisions.

0x10 Write Module
Input 96 Bytes Intensity Data
Output Status Byte
Description Sets intensities of all 192 LEDs (0xF is full off). Each set of 24 byte refers to a row (board

quadrant). Within those, the first 8 bytes are red data, the next 8 are green data, and the
last 8 are blue data. The first byte of color data contains the intensity of the first LED in
the lower nib and the intensity of the second LED in the upper nib. Similarly, the second
byte contains the third LED’s intensity in the lower nib and the fourth’s in the upper nib,
and so forth.

0x11 Write Row
Input 1 Byte Row, 96 Bytes Intensity Data
Output Status Byte
Description Sets intensities of 48 LEDs in a single row (a number between 0 and 3 corresponding to a

board quadrant). The first 8 bytes are red data, the next 8 are green data, and the last
8 are blue data. The first byte of color data contains the intensity of the first LED in the
lower nib and the intensity of the second LED in the upper nib. Similarly, the second byte
contains the third LED’s intensity in the lower nib and the fourth’s in the upper nib, and
so forth.

0x20 Read Module
Input None
Output 8 Bytes Sensor Data, Status Byte
Description Reads sensor data for the entire board. Each pair of two bytes refers to a row (board

quadrant). The lowest bit of the first byte is the first led of the row and the lowest bit of
the second byte is the ninth.

0x21 Read Row
Input 1 Byte Row (0-3)
Output 2 Bytes Sensor Data, Status Byte
Description Reads sensor data for the indicated row (a number between 0 and 3). The lowest bit of the

first byte is the first led of the row and the lowest bit of the second byte is the ninth.

0x30 Read and Write Module
Input 96 Bytes Intensity Data
Output 8 Bytes Sensor Data, Status Byte
Description Performs both a module write and a module read in a single command.

7

0x31 Read and Write Row
Input 1 Byte Row, 24 Bytes Intensity Data
Output 2 Bytes Sensor Data, Status Byte
Description Performs both a row write and row read in a single command.

2. Preprogrammed Modes

Class 4 is reserved for preprogrammed (stand alone) behaviors. Currently only an effective power down, which
turns all LEDs off, is implemented. Possible uses of this class include preloaded images or animations (though the
latter requires some modification of the firmware structuring).

0x40 Power Down
Input None
Output Status Byte
Description Turns all LEDs off.

3. Communications

Class 5 is reserved for communications related commands. Currently only ping is implemented.
0x50 Ping
Input None
Output Status Byte
Description Returns a status byte of 0x00 (success).

4. Maintenance

Class 6 is reserved for maintenance commands. Currently only an online reset is implemented.
0x70 Online Reset
Input None
Output Status Byte
Description Reinitializes LED driver hardware. Useful in the event of a brownout.

5. Diagnostics

Classes 7 and 8 are reserved for firmware and hardware diagnostics. Command 0x70 is reserved for version number;
the remaining commands in this class are intended to be used as a pathway for obtaining debugging information, such
as variable values. Since it is not intended to exercise hardware outside of the AVR, commands of class 7 need not
return a standard status byte. Class 8 may include test patterns, sensor feedback testing, automatic diagnostic of
LED drivers, etc. Currently, only a test pattern is implemented.

0x70 Firmware Version Number
Input None
Output 1 Byte Version Number
Description Returns the firmware version number. Historically, this is done with an implied decimal

between the upper and lower nibs. Note that this command does not return a status byte.

0x80 Test Pattern
Input None
Output Status Byte
Description Displays a test pattern. Most likely, this consists of flashing each LED in turn, though the

implementation is left up to the user to suit their application.

8

APPENDIX C: SURFACE MOUNT SOLDERING

Courtesy of Mike Anderson.

1. Preparation

Here I will briefly go over soldering the different com-
ponents involved in assembling a DDF controller board.
Before you start you will absolutely need the following:
a fine pointed soldering iron with temperature control, a
flux pen, solder wick, and fine solder (I also carry tweez-
ers and a small dental pick in my arsenal of tools, but
these aren’t necessary). In preparation, wet the sponge
that comes with your soldering iron, or if there is none
get an old sponge and keep it on a dish next to your iron.
Turn the iron to greater than 550 degrees F, but less than
650. Tin the end of the soldering iron. You are ready to
start.

2. QSOP Packages

Begin with the QSOP packages (MAX7313), as they
are the hardest and you will be thankful when they’re fin-
ished. To solder a surface mount QSOP, start by melting
a dab of solder onto one of the corner pads. There is
already solder on all of the pads, but this is important to
get the positioning of the IC correct. Use your fingers to
pick up the chip and place it over the pads (make sure it
is in the correct orientation!). While holding it with one
finger in the right place, use the soldering iron with your
other hand to press down the lead above your solder dab
such that the IC is attached to the board at that one
location. Use this one location as a pivot to make any
additional adjustments and solder down one more lead.
Don’t worry if these solder joints are clumsy or don’t look
great, their purpose is to hold down the IC while you sol-
der the rest of the leads. This part is usually the hardest,
once you can consistently position and attach qsops you
will be set.

To solder the rest of the leads use the same methodol-
ogy as soldering through-hole components, you want to
heat up the lead and the pad at the same time and allow
the solder to flow onto both. I use the following method:
hold the tip of the iron at the point on the pad where the
lead and pad meet, wait for it to heat up (can take a few
seconds if it’s the first lead on the side), apply solder at
the top of the lead (where it goes into the IC), the solder
should be melted by the heat of the lead, you should be
able to watch the solder flow down to the edge of the pad.
Do this for all leads.

You should be able to do this without to much mess,
but you if you get bridges don’t worry, that’s what the
flux pen and solder wick are for. To remove solder bridges
place the solder wick across the top of the bridge and lay
the tip of the iron atop the wick such that a maximal
area is covered. Wait until you can feel the solder melt

under the wick, then move the wick around so that it will
suck up the molten solder. This process can be tricky at
first, but once you get a feel for it, it will go quickly. Now
all of the leads are soldered and there are no bridges, but
it might not look so great. This is where the flux pen
comes in. The purpose of the flux pen is that adding
the flux will allow the solder to melt and reflow, but not
at the places where the flux is. Push down on the flux
pen to release the flux and apply to both sides. Carefully
go over each pin allowing the solder to reflow, the joints
should look smooth and have minimal amounts of solder,
they should be shiny (not dull), and cover the entire lead
and pad. If you don’t like the residue the flux pen leaves
behind on the PCB you can use alcohol wipes to get rid
of it.

3. 0402 Resistor Arrays

The next component I soldered were the resistor ar-
rays. You may notice that these packages have no leads,
but rather half-moon indents on both sides. Start by
places a dab of solder on one pad in the corner of the
package. Use a toothpick or dental pick to hold the re-
sistor pack steady while you melt the solder dab into the
half moon. The package should be stationary now, go
ahead and solder down the rest of it. There’s really no
trick to it, you just need to get some practice. Start with
the ground sides of the switch resistors, those don’t mat-
ter if you bridge them. (Resistor arrays are orientation
independent)

4. 0603 Passives

To finish off a quadrant of led drivers don’t forget the
1µF decoupling capacitors. More 0603 passives can be
found in the controller region. Put solder down on one
pad and use tweezers to hold the passive above the pad.
Use your toothpick or dental pick to hold down the other
end while you apply the soldering iron to the other. It
should be attached now, just apply solder to the other
end as usual. (All passives used in this project are orien-
tation independent)

5. TQFP Packages

TQFP’s are soldered in the same manner as the
QSOP’s. However, be careful of two things: do not
switch the positions (the Atmega is U19 and the FTDI
is U18) and take care to line up the small white circle on
the chip (denoting pin 1) with the small white circle on
the board. As with the QSOP’s the hardest and most
crucial part to your success is making sure the leads are
lined up with the pads. Try getting one lead down and
use it as a pivot to line up the other leads and then sol-
der a second lead (in an adjacent corner). This will be

9

frustrating at first, but stick with it and you will quickly
improve.

6. Crystal

The crystal has 3 grooves underneath, each lined with
metal that will suck the solder underneath of it. Put a
dab of solder on one of the pads, and place the crystal
over it. Heat up that dab of solder from the edge of the
pad until you can see it flow under the crystal. Then
apply solder and heat to one end of a channel; once the
solder starts melting wait until you can see it come out
the other side, before removing the iron.

7. Through-hole Components

Now that all of the surface mount components are in-
stalled, you will want to install all of the connectors,
header, LED’s, etc. in order of height, from shortest to
tallest. For header in large sections (i.e connectors for the

tiles), you may want to try taping down a row of header
from the top, then carefully flipping it over and soldering
the joints on the bottom. For individual header pieces
(i.e atmega interface, debug interface), I would suggest
getting a lot of solder on the tip of your iron and hold-
ing the header in place with one hand while you get one
pin attached. The joint may be sloppy, but the header
should be attached and not tilted. Solder the rest of the
leads and go back and clean up the first joint.

The USB connector is relatively simple. However, I
suggest you load up on the solder for these joints, and
make sure the joints are good. We found that a lot of
communication issues arose from poor solder joints on
the USB connectors.

8. Aesthetics

If you like, you can (carefully) go over the board with a
toothbrush (or rag) and rubbing alcohol to get rid of the
shiny rosin spots that are left when the flux evaporates.

APPENDIX D: SCHEMATICS

The schematics are divided up into three sheets. The first sheet (Figure 1) shows the USB interface, which provides
a serial interface to the microcontroller and a low-current 3.3V for the LED controllers. The second sheet (Figure 2)
shows the microcontroller, which interprets the serial commands and interfaces to the LED controllers via I2C. The
third sheet (Figure 3) shows LED controllers for a single row. This schematic is then replicated four times on the
board.

10

FIG. 1: USB Interface Schematic

11

FIG. 2: Controller Schematic

12

FIG. 3: Quadrant Schematic

13

APPENDIX E: FIRMWARE CODE

1. firmware.c

//1E Disco Dance Floor
//Firmware Revision 2.0R
//January 2005
//Grant Elliott

#define VERSION 0x20

#include <ioavr.h>
#include <inavr.h>
#include "TWI_Master.c" //Standard Atmel TWI (I2C) appnote
#include "usart.c" //Modified Atmel USART appnote

//Address Masks
#define RED_MASK 0x00
#define GREEN_MASK 0x01
#define BLUE_MASK 0x08
#define SENSOR_MASK 0x09
const unsigned char ROW_MASKS[]={0x20, 0x22, 0x10, 0x12};

//Error Codes
//Each bit maps to an error. More than one bit may be set.
//The first two bits are reserved for basic errors.
#define CODE_SUCCESS 0x00
#define CODE_BADCOMMAND 0x01
#define CODE_BADARGS 0x02

//function declarations

void delay();
void ftdi_init();
void send_status_byte(unsigned char status);

unsigned char module_init();
unsigned char chip_init(unsigned char slave);
unsigned char sensor_init(unsigned char slave);

unsigned char power_down();
unsigned char chip_write_blank(unsigned char slave);
unsigned char self_test();

unsigned char module_write();
unsigned char row_write(unsigned char row);
unsigned char chip_write(unsigned char slave);

unsigned char module_read(unsigned char *buffer);
unsigned char row_read(unsigned char row, unsigned char *buffer);

void main()
{
unsigned char command,temp=CODE_SUCCESS,row;
unsigned char buffer[8];

delay(); //wait for power-on transients to die
ftdi_init(); //initialize USB interface

14

__enable_interrupt();
usart_init(8); //initialize USART at 56Kbps
TWI_Master_Initialise(); //initialize I2C
module_init(); //Configure LED drivers
while(1)
{
command=usart_getc(); //Fetch and Branch
switch(command)
{
case 16: //0x10 Module Write (96 data in - status out)
if (usart_wait_for_data(96))
send_status_byte(module_write());

else
send_status_byte(CODE_BADARGS);

break;

case 17: //0x11 Row Write (1 row, 24 data in - status out)
if (usart_wait_for_data(25))
send_status_byte(row_write(usart_getc()));

else
send_status_byte(CODE_BADARGS);

break;

case 32: //0x20 Module Read (0 in - 8 data, status out)
temp=module_read(buffer);
send_status_byte(temp);
if (temp==CODE_SUCCESS)
{
usart_putc(buffer[0]);
usart_putc(buffer[1]);
usart_putc(buffer[2]);
usart_putc(buffer[3]);
usart_putc(buffer[4]);
usart_putc(buffer[5]);
usart_putc(buffer[6]);
usart_putc(buffer[7]);

}
break;

case 33: //0x21 Row Read (1 row in - 2 data, status out)
if (usart_wait_for_data(1))
{
temp=row_read(usart_getc(),buffer);
send_status_byte(temp);
if (temp==CODE_SUCCESS)
{
usart_putc(buffer[0]);
usart_putc(buffer[1]);

}
}
else
send_status_byte(CODE_BADARGS);

break;

case 48: //0x30 Module Read/Write (96 data in - 8 data, status out)
if (usart_wait_for_data(96))
{
temp=module_write();

15

temp|=module_read(buffer);
send_status_byte(temp);
if (temp==CODE_SUCCESS)
{
usart_putc(buffer[0]);
usart_putc(buffer[1]);
usart_putc(buffer[2]);
usart_putc(buffer[3]);
usart_putc(buffer[4]);
usart_putc(buffer[5]);
usart_putc(buffer[6]);
usart_putc(buffer[7]);

}
}
else
send_status_byte(CODE_BADARGS);

break;

case 49: //0x31 Row Read/Write (1 row, 24 data in - 2 data, status out)
if (usart_wait_for_data(25))
{
row=usart_getc();
temp=row_write(row);
temp=row_read(row,buffer);
send_status_byte(temp);
if (temp==CODE_SUCCESS)
{
usart_putc(buffer[0]);
usart_putc(buffer[1]);

}
}
else
send_status_byte(CODE_BADARGS);

break;

//Power Down
case 64: //0x40
send_status_byte(power_down());

break;

//Test Repsponse (Ping)
case 80: //0x50
send_status_byte(CODE_SUCCESS);

break;

//Reset
case 96: //0x60
send_status_byte(module_init());

break;

//Version Number (Note that this does not return a standard status byte)
case 112: //0x70
send_status_byte(VERSION);

break;

//Self-Test
case 128: //0x80
send_status_byte(self_test());

16

break;

default:
send_status_byte(CODE_BADCOMMAND);

break;
}
usart_flushRx();

}
}

//delay()
//No arguments
//No return value
//A null loop to waste cycles
void delay()
{
unsigned int a,b;
for(a=0;a<65000;a++) for(b=0;b<65000;b++) {}
}

//ftdi_init()
//No arguments
//No return value
//Sets the GPIO AVR ports for I2C (TWI) and USART
void ftdi_init()
{
DDRD=0x0A; //00001010
DDRC=0x04; //00000100
PORTD=PORTD&0xF7; //11110111

}

//module_init()
//No arguments
//Returns status byte
//Initializes the 7313 chips using chip_init and sensor_init
unsigned char module_init()
{
unsigned char i, code=CODE_SUCCESS;
for (i=0;i<4;i++)
{
code |= chip_init(ROW_MASKS[i]|RED_MASK);
code |= chip_init(ROW_MASKS[i]|GREEN_MASK);
code |= chip_init(ROW_MASKS[i]|BLUE_MASK);
code |= sensor_init(ROW_MASKS[i]|SENSOR_MASK);

}
return code;
}

//sensor_init(slave)
//slave is the I2C address of a sensor 7313
//Returns status byte
//Initializes a 7313 for sensor input
unsigned char sensor_init(unsigned char slave)
{
//add error checking

unsigned char messageBuf[10];
unsigned char code=CODE_SUCCESS;

17

messageBuf[0] = (slave<<TWI_ADR_BITS) | (FALSE<<TWI_READ_BIT);

//config register
messageBuf[1] = 0x0F;
messageBuf[2] = 0x00;
TWI_Start_Transceiver_With_Data(messageBuf, 3);

//port config
messageBuf[1] = 0x06;
messageBuf[2] = 0xFF;
messageBuf[3] = 0xFF;
TWI_Start_Transceiver_With_Data(messageBuf, 4);

return code;
}

//chip_init(slave)
//slave is the I2C address of a LED 7313
//Returns status byte
//Initializes a 7313 for LED output
//Configures for independent control
//blink phase = 1 (so 0xF is off, 0x0 is 15/16)
//Global intensity to full
//All individual controls to off
unsigned char chip_init(unsigned char slave)
{
//add error checking

unsigned char code=CODE_SUCCESS;
unsigned char messageBuf[10];

//config register
messageBuf[0] = (slave<<TWI_ADR_BITS) | (FALSE<<TWI_READ_BIT);
messageBuf[1] = 0x0F;
messageBuf[2] = 0x08;
TWI_Start_Transceiver_With_Data(messageBuf, 3);

//port config
messageBuf[1] = 0x06;
messageBuf[2] = 0x00;
messageBuf[3] = 0x00;
TWI_Start_Transceiver_With_Data(messageBuf, 4);

//blink phase 0
messageBuf[1] = 0x02;
messageBuf[2] = 0xFF;
messageBuf[3] = 0xFF;
TWI_Start_Transceiver_With_Data(messageBuf, 4);

//master intensity full on
messageBuf[1] = 0x0E;
messageBuf[2] = 0xFF;
TWI_Start_Transceiver_With_Data(messageBuf, 3);

//individual intensities off
messageBuf[1] = 0x10;
messageBuf[2] = 0xFF;

18

messageBuf[3] = 0xFF;
messageBuf[4] = 0xFF;
messageBuf[5] = 0xFF;
messageBuf[6] = 0xFF;
messageBuf[7] = 0xFF;
messageBuf[8] = 0xFF;
messageBuf[9] = 0xFF;
TWI_Start_Transceiver_With_Data(messageBuf, 10);

return code;
}

//power_down()
//No arguments
//Returns status byte
//A wrapper for turning all LEDs off
unsigned char power_down()
{
unsigned char i,code=CODE_SUCCESS;
for (i=0;i<4;i++)
{
code |= chip_write_blank(ROW_MASKS[i]|RED_MASK);
code |= chip_write_blank(ROW_MASKS[i]|GREEN_MASK);
code |= chip_write_blank(ROW_MASKS[i]|BLUE_MASK);

}
return code;
}

//self_test()
//No arguments
//Returns status byte
//A self-test sequence - Fill in as desired
unsigned char self_test()
{
unsigned char code=CODE_SUCCESS;
//write some code here

return code;
}

//module_write()
//No arguments
//Returns status byte
//A wrapper for writing each row in turn
unsigned char module_write()
{
unsigned char code;
code = row_write(0);
code |= row_write(1);
code |= row_write(2);
code |= row_write(3);
return code;
}

//row_write(row)
//row is a row number (board quadrant) 0-3
//Returns status byte
//Writes the next 24 bytes in the USART buffer to the three LED drivers in row

19

//A wrapper for chip_write which should not be called directly
unsigned char row_write(unsigned char row)
{
unsigned char code;
code = chip_write(RED_MASK|ROW_MASKS[row]);
code |= chip_write(GREEN_MASK|ROW_MASKS[row]);
code |= chip_write(BLUE_MASK|ROW_MASKS[row]);
return code;
}

//chip_write(slave)
//slave is the I2C address of a LED driving 7313
//Returns status byte
//Writes 8 bytes to the LED intensity memory of a 7313
unsigned char chip_write(unsigned char slave)
{
//add error testing

unsigned char code=CODE_SUCCESS;
unsigned char messageBuf[10];
messageBuf[0] = (slave<<TWI_ADR_BITS) | (FALSE<<TWI_READ_BIT);
messageBuf[1] = 0x10;
messageBuf[2] = usart_getc();
messageBuf[3] = usart_getc();
messageBuf[4] = usart_getc();
messageBuf[5] = usart_getc();
messageBuf[6] = usart_getc();
messageBuf[7] = usart_getc();
messageBuf[8] = usart_getc();
messageBuf[9] = usart_getc();
TWI_Start_Transceiver_With_Data(messageBuf, 10);
return code;

}

//chip_write_blank(slave)
//slave is the I2C address of a LED driving 7313
//Returns status byte
//Like chip_write, but sets all LEDs off
unsigned char chip_write_blank(unsigned char slave)
{
//add error testing

unsigned char code=CODE_SUCCESS;
unsigned char messageBuf[10];
messageBuf[0] = (slave<<TWI_ADR_BITS) | (FALSE<<TWI_READ_BIT);
messageBuf[1] = 0x10;
messageBuf[2] = 0xFF;
messageBuf[3] = 0xFF;
messageBuf[4] = 0xFF;
messageBuf[5] = 0xFF;
messageBuf[6] = 0xFF;
messageBuf[7] = 0xFF;
messageBuf[8] = 0xFF;
messageBuf[9] = 0xFF;
TWI_Start_Transceiver_With_Data(messageBuf, 10);
return code;

}

20

//module_read(buffer)
//buffer is a location to put sensor data
//Returns status byte
//Reads four rows and stores 8 bytes of sensor data in buffer
unsigned char module_read(unsigned char *buffer)
{
unsigned char code;
code = row_read(0,buffer);
code |= row_read(1,buffer+2);
code |= row_read(2,buffer+4);
code |= row_read(3,buffer+6);
return code;
}

//row_read(row, buffer)
//row is a row number (board quadrant) 0-3
//buffer is a location to put sensor data
//Reads a row and stores 2 bytes of sensor data in buffer
unsigned char row_read(unsigned char row, unsigned char *buffer)
{
//add error code

unsigned char code=CODE_SUCCESS, slave=ROW_MASKS[row]|SENSOR_MASK;
unsigned char messageBuf[4];
messageBuf[0] = (slave<<TWI_ADR_BITS) | (FALSE<<TWI_READ_BIT);
messageBuf[1] = 0x00;
TWI_Start_Transceiver_With_Data(messageBuf, 2);
messageBuf[0] = (slave<<TWI_ADR_BITS) | (TRUE<<TWI_READ_BIT);
TWI_Start_Transceiver_With_Data(messageBuf, 3);
TWI_Get_Data_From_Transceiver(messageBuf, 3);
*buffer=messageBuf[1];
buffer++;
*buffer=messageBuf[2];
return code;
}

//send_status_byte(status)
//status is a status byte
//No return value
//Transmits a single byte over USART
//Could potentially contain specialized code for handling status bytes
void send_status_byte(unsigned char status)
{
if (usart_unsent_data>0)
usart_flushTx();

usart_putc(status);
}

21

2. usart.c

/* UART Buffer Defines */
#define USART_RX_BUFFER_SIZE 128 /* 2,4,8,16,32,64,128 or 256 bytes */
#define USART_TX_BUFFER_SIZE 16 /* 2,4,8,16,32,64,128 or 256 bytes */
#define USART_RX_BUFFER_MASK (USART_RX_BUFFER_SIZE - 1)
#define USART_TX_BUFFER_MASK (USART_TX_BUFFER_SIZE - 1)
#if (USART_RX_BUFFER_SIZE & USART_RX_BUFFER_MASK)

#error RX buffer size is not a power of 2
#endif
#if (USART_TX_BUFFER_SIZE & USART_TX_BUFFER_MASK)

#error TX buffer size is not a power of 2
#endif

/* Static Variables */
static unsigned char USART_RxBuf[USART_RX_BUFFER_SIZE];
static volatile unsigned char USART_RxHead;
static volatile unsigned char USART_RxTail;
static unsigned char USART_TxBuf[USART_TX_BUFFER_SIZE];
static volatile unsigned char USART_TxHead;
static volatile unsigned char USART_TxTail;
static volatile unsigned char USART_RxSize;
static volatile unsigned char USART_TxSize;

/* Prototypes */
void usart_init(unsigned int baudrate);
unsigned char usart_getc(void);
void usart_putc(unsigned char data);
unsigned char usart_unread_data(void);
unsigned char usart_unsent_data(void);
void usart_flushRx();
void usart_flushTx();
unsigned char usart_wait_for_data(unsigned char num_bytes);

/* Initialize USART */
void usart_init(unsigned int baudrate)
{

/* Set the baud rate */
UBRRH = (unsigned char) (baudrate>>8);
UBRRL = (unsigned char) baudrate;

/* Enable UART receiver and transmitter */
UCSRB = ((1 << RXCIE) | (1 << RXEN) | (1 << TXEN));

/* Set frame format: 8 data 2stop */
//UCSR0C = (1<<USBS0)|(1<<UCSZ01)|(1<<UCSZ00); //For devices with Extended IO
UCSRC = (1<<URSEL)|(1<<USBS)|(1<<UCSZ1)|(1<<UCSZ0); //For devices without Extended IO

usart_flushRx();
usart_flushTx();

}

/* Interrupt handlers */
#pragma vector=USART_RXC_vect
__interrupt void USART_RX_interrupt(void)
{

unsigned char data;
unsigned char tmphead;

22

/* Read the received data */
data = UDR;
/* Calculate buffer index */
tmphead = (USART_RxHead + 1) & USART_RX_BUFFER_MASK;
USART_RxHead = tmphead; /* Store new index */

USART_RxSize++;
if (tmphead == USART_RxTail)
{

usart_flushRx();
}

USART_RxBuf[tmphead] = data; /* Store received data in buffer */
}

#pragma vector=USART_UDRE_vect
__interrupt void USART_TX_interrupt(void)
{

unsigned char tmptail;

/* Check if all data is transmitted */
if (USART_TxHead != USART_TxTail)
{

/* Calculate buffer index */
tmptail = (USART_TxTail + 1) & USART_TX_BUFFER_MASK;
USART_TxTail = tmptail; /* Store new index */

USART_TxSize--;

UDR = USART_TxBuf[tmptail]; /* Start transmition */
}
else
{

UCSRB &= ~(1<<UDRIE); /* Disable UDRE interrupt */
}

}

/* Read and write functions */
unsigned char usart_getc(void)
{

unsigned char tmptail;

while (USART_RxHead == USART_RxTail) /* Wait for incomming data */
;

tmptail = (USART_RxTail + 1) & USART_RX_BUFFER_MASK;/* Calculate buffer index */

USART_RxSize--;

USART_RxTail = tmptail; /* Store new index */

return USART_RxBuf[tmptail]; /* Return data */
}

void usart_putc(unsigned char data)
{

unsigned char tmphead;
/* Calculate buffer index */
tmphead = (USART_TxHead + 1) & USART_TX_BUFFER_MASK; /* Wait for free space in buffer */
while (tmphead == USART_TxTail);

23

USART_TxBuf[tmphead] = data; /* Store data in buffer */
USART_TxHead = tmphead; /* Store new index */

USART_TxSize++;

UCSRB |= (1<<UDRIE); /* Enable UDRE interrupt */
}

unsigned char DataInReceiveBuffer(void)
{

return (USART_RxHead != USART_RxTail); /* Return 0 (FALSE) if the receive buffer is empty */
}

unsigned char usart_unread_data(void) {
return USART_RxSize;

}

unsigned char usart_unsent_data(void) {
return USART_TxSize;

}

void usart_flushRx()
{
USART_RxHead=0;
USART_RxTail=0;
USART_RxSize=0;
}

void usart_flushTx()
{
USART_TxHead=0;
USART_TxTail=0;
USART_TxSize=0;
}

unsigned char usart_wait_for_data(unsigned char num_bytes)
{
//waits for num_bytes bytes, but times out if they don’t come
unsigned char f=0,g=0;
while(USART_RxSize<num_bytes)
{

g++;
if(g==0xFF)
{
f++;
g=0;

}
if(f==0xFF)
return 0;

}
return 1;
}

